
Remise à niveau MATHÉMATIQUES

Quiz

Questions courtes et exercices corrigés

Hinanui Mare Croisié

Questions Réponses et exercices d'application

Avant de commencer

Choisissez une question au hasard dans chacun des 5 thèmes proposés :

• Thème A : Nombres et polynômes

• Thème B : Suites numériques

• Thème C : Fonctions

• Thème D : Probabilités - Variables aléatoires

• Thème E : Géométrie dans l'espace

Accumulez des points en répondant correctement aux questions sélectionnées. Consultez la partie « Réponses et exercices d'application » pour découvrir la valeur de chaque question :

$$(*) = 1 \text{ point}$$

$$(**) = 2 \text{ points}$$

$$(***) = 3 \text{ points}$$

À plusieurs, celui qui atteint en premier 10 points est le gagnant.

Pour chaque thème, vous trouverez une partie intitulée « Pour aller plus loin » : cette partie comporte des questions, pas nécessairement plus difficiles, mais qui sont moins souvent abordées dans les sujets d'examen.

Thème A - Nombres et polynômes

	Questions de cours	
A1 Comment additionne-t-		
		» Réponse page 18
	_	r Heponse page 10
	ът I. I. I. I. I. I.	
A2.	Multiplication de fractions	J
Comment multiplie-t-on	deux fractions?	
	€	<i>Réponse page 18</i>
A3.	Division par une fraction	
G : 4 1 4 1 1 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a , c
Soient a, b, c et a des rec	ls avec b, c et d non nuls. Compléter	
	© ⊑	<i>Réponse page 18</i>
A4.	Simplification d'une fraction	
Comment simplifie-t-on	une fraction?	

riangleq Réponse page 18

Puissance 0 ou 1

Soit x un nombre réel non nul.

Compléter:

$$\bullet \ x^0 = \dots \qquad \bullet \ x^1 = \dots \dots$$

$$\bullet x^1 = \dots$$

Réponse page 20

Opérations sur les puissances (1)

Soient x et y deux nombres réels non nuls et n, m des entiers relatifs. Compléter :

•
$$x^n \times x^m = \dots$$
 • $(xy)^n = \dots$

•
$$x \times x^n = \dots$$

•
$$(xy)^n = \dots$$

Réponse page 20

Opérations sur les puissances (2)

Soient x et y deux nombres réels non nuls et n, m des entiers relatifs. Compléter :

$$\bullet \ x^{-1} = \dots$$

$$\bullet \ \frac{x^n}{x^m} = \dots$$

$$\bullet \left(\frac{x}{y}\right)^n = \dots$$

Réponse page 20

Identités remarquables

Quelles sont les 3 identités remarquables?

......

Réponse page 21

A9. Signe d'un polynôme de degré 1

Comm		x réels. ine-t-on le signe d'un polynôme $P(x) = ax + b$ de degr	
		⇔ Réponse po	
A10.	Représe	entation graphique d'un polynôme de degré	1
Propos	a et b deux ser une mét x) = $ax + b$.	thode pour tracer le graphe d'une fonction f définie	$\operatorname{sur} \mathbb{R}$
		rightharpoonup Réponse pour $rightharpoonup Réponse pour rightharpoonup Reponse pour Réponse pour rightharpoonup Reponse Pour Reponse pour Reponse pour rightharpoonup Reponse Pour Repon$	1ge 24
	A11.	Racines d'un polynôme de degré 2	
P(x) =	$=ax^2+bx+$	rois réels tels que $a \neq 0$ et le polynôme du second $+c$. ine-t-on les racines du polynôme P ?	degré
			ige 26

A12.	Signe d'	ın polynôm	e de degré 2	2 avec $\Delta > 0$
A 1 /.				

Soient a, b et c trois réels tels que $a \neq 0$ et le polynôme du second degré $P(x) = ax^2 + bx + c$. On pose $\Delta = b^2 - 4ac$. Dans le cas où $\Delta > 0$, comment détermine-t-on le signe de $P(x)$?
$ riangleq R\'eponse\ page\ 28$
A13. Signe d'un polynôme de degré 2 avec $\Delta = 0$
Soient a, b et c trois réels tels que $a \neq 0$ et le polynôme du second degré $P(x) = ax^2 + bx + c$. On pose $\Delta = b^2 - 4ac$. Dans le cas où $\Delta = 0$, comment détermine-t-on le signe de $P(x)$?
⇔ Réponse page 28
A14. Signe d'un polynôme de degré 2 avec $\Delta < 0$
Soient a,b et c trois réels tels que $a \neq 0$ et le polynôme du second degré $P(x) = ax^2 + bx + c$. On pose $\Delta = b^2 - 4ac$. Dans le cas où $\Delta < 0$, comment détermine-t-on le signe de $P(x)$?
⇔ Réponse page 29

riangleq Réponse page 32

Pour aller plus loin

A15. Factorisation d'un polynôme de degré n

Soient $n \in \mathbb{N}^*$; P un polynôme de degré n . Soit r une racine de P (c'est-à-dire r est tel que $P(r) = 0$). Par quoi peut-on factoriser ce polynôme P ?
⇔ Réponse page 30
A16. Factorielle Soit $n \in \mathbb{N}^*$. Comment calcule-t-on $n!$? On rappelle que $n!$ se lit « factorielle n ».
⇔ Réponse page 31
A17. Coefficient binomial Soit $n \in \mathbb{N}^*$ et $k \in \mathbb{N}$ avec $k \le n$. Que vaut le nombre $\binom{n}{k}$? On rappelle que $\binom{n}{k}$ se lit « k parmi n ».

Réponses et exercices d'application

A1. Addition de fractions (*)

Pour additionner deux fractions, on les met au même dénominateur (si ce n'est pas déjà le cas) : il suffit ensuite d'additionner les numérateurs.

A2. Multiplication de fractions (*)

Pour multiplier deux fractions, il suffit de multiplier les numérateurs entre eux et les dénominateurs entre eux : $\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$.

A3. Division par une fraction (*)

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}.$$

On retiendra que diviser par une fraction revient à multiplier par son inverse.

A4. Simplification d'une fraction (*)

Pour simplifier une fraction $\frac{a}{b}$, on cherche un diviseur commun à a et b. On divise alors a et b par ce nombre.

Pour obtenir une fraction irréductible, c'est-à-dire une fraction que l'on ne peut pas simplifier, on cherche le plus grand diviseur commun à a et b: on divise alors a et b par ce plus grand diviseur commun.

Exercice d'application

(Calculer avec des fractions)

Effectuer les calculs suivants :

$$A = \frac{1}{3} \left(\frac{3}{5} - \frac{1}{10} \right) \qquad B = 1 - \frac{3}{4} \left(2 - \frac{1}{3} \right) \qquad C = \frac{-2}{\frac{1}{4} + \frac{1}{2}}$$

Solution _

$$A = \frac{1}{3} \times \left(\frac{3}{5} - \frac{1}{10}\right)$$

$$= \frac{1}{3} \times \left(\frac{6}{10} - \frac{1}{10}\right)$$

$$= \frac{1}{3} \times \left(\frac{6}{10} - \frac{1}{10}\right)$$
On commence par le calcul des parenthèses : on met au même dénominateur pour soustraire les fractions.

$$= \frac{1}{3} \times \frac{5}{10}$$

$$= \frac{1}{3} \times \frac{1}{2}$$

$$= \frac{1}{3} \times \frac{1}{2}$$
Avant de calculer le produit, on vérifie si on peut simplifier. Ici, on ne peut rien simplifier.

$$B = 1 - \frac{3}{4} \left(2 - \frac{1}{3}\right)$$

$$= 1 - \frac{3}{4} \left(\frac{6}{3} - \frac{1}{3}\right)$$

$$= 1 - \frac{3}{4} \times \frac{5}{3}$$

$$= 1 - \frac{3 \times 5}{4 \times 3}$$

$$= 1 - \frac{5}{4}$$

$$= \frac{4}{4} - \frac{5}{4} = -\frac{1}{4}$$

$$Don commence par le calcul des parenthèses : on met au même dénominateur.

La multiplication est prioritaire.

Avant de calculer le produit, on vérifie si on peut simplifier. Ici, on peut simplifier par 3.

On met au même dénominateur.$$

$$C = \frac{-2}{\frac{1}{4} + \frac{1}{2}}$$

$$= \frac{-2}{\frac{1}{4} + \frac{2}{4}}$$

$$= \frac{-2}{\frac{3}{4}}$$

$$= -2 \times \frac{4}{3}$$

$$= -2 \times \frac{4}{3}$$
Diviser par une fraction revient à multiplier par son inverse.
$$= -2 \times \frac{4}{3}$$

$$= -2 \times \frac{4}{3}$$
Avant de calculer le produit, on vérifie si on peut simplifier.
$$= -\frac{8}{3}$$
Avant de calculer le produit, on vérifie si on peut simplifier.